2 research outputs found

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Dual Performance Optimization of 6-DOF Robotic Arm Trajectories in Biomedical Applications

    No full text
    For the first time, dual-performance perfection technologies were used to kinematically operate sophisticated robots. In this study, the trajectory development of a robot arm is optimized using a dual-performance perfection technique. The proposed approach alters the robot arm's Kinematics by creating virtual points even if the robotic system is not redundant to make it kinematically suitable for biomedical applications. In the suggested method, an appropriate objective function is chosen to raise one or maybe more performance measures while lowering one or more kinematic characteristics of a robot arm. The robot arm's end effector is set in place at the crucial locations, and the dual performance precision algorithm changes the joints and virtual points due to the robot arm's self-motion. As a result, the ideal values for the virtual points are established, and the robot arm's design is changed. Accordingly, this method's ability to visualize modifications made to the processor's design during the optimization problem is one of its benefits. The active robotic arm is used as a case study in this article. The task is defined as choosing the best path based on the input target's position and direction and is used in X-ray robot systems. The outcomes demonstrate the viability of the suggested approach and can serve as a useful prototype for an intelligent X-ray robot
    corecore